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Thermal convection in a three-component fluid consisting of an inert carrier gas, 
a condensable vapour and small liquid droplets dispersed throughout the gaseous 
components has been investigated both theoretically and experimentally. The 
theoretical study is concerned with the stability of a horizontal fluid layer subject 
to gradients of both temperature and droplet density. The stability is charac- 
terized by four parameters: two material constants, that is, a modified Prandtl 
number P and a constant & proportional to On, - K (D,  is the mutual mass dif- 
fusivity of the two gaseous constituents, K the thermometric conductivity of the 
gas phase), a modified Rayleigh number R and a parameter X defined as the ratio 
of the droplet density gradient to the gas density gradient. It is shown for positive 
R that, irrespective of the value of R, the system is stable for S > X, (X, is a 
constant dependent on P and &) and unstable for S < Q (& is normally less than 
8,) and that for the intermediate range Q < S < X, a transition from stability 
to  instability occurs via an oscillatory state as R is increased through a critical 
value depending on S. It is shown that the stability is governed largely by both 
vapour diffusion through the inert gas and droplet growth or decay due to phase 
changes. 

In  the experiments, thermal convection in a three-component fluid consisting 
of air, water vapour and water droplets was investigated. The cloud of droplets 
was mainly formed by injecting cigarette smoke into a horizontal layer of air 
saturated with water vapour. After the injection several phases of motion were 
observed successively. Among them there were travelling waves and steady 
cellular convection. Measurements were made of the critical Rayleigh numbers 
for the onset of the phases, the scale of the steady convection cells and the speed 
of the travelling waves. It is found that all the qualitative features of the experi- 
ment are explained by the theory. 

1. Introduction 
The subject of this paper is thermal convection in a horizontal layer of a three- 

component fluid consisting of an inert carrier gas, a condensable vapour and 
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droplets of the liquid phase of this vapour dispersed throughout the gaseous 
components. It is well known that a simple (one-component) fluid heated from 
below becomes unstable and exhibits convective motion a t  a sufficiently large 
temperature gradient. However, past evidence suggests that in atmospheric 
convection the evaporation and condensation of water vapour have a large 
effect on the motion. Many laboratory experiments concerning this mechanism 
have been made, using various methods to simulate the heat production due to 
phase changes. Turner (1963) used a combination of two liquids which releases 
small gas bubbles through a chemical reaction and observed the development of 
thermals. The density increase produced by mixing water and alcohol was 
adopted by Turner & Yang (1963) in order to simulate the turbulent mixing 
a t  a cloud top. This method was also used by Yang (1968). In  the experiments of 
Hadlock & Hess (1968) heat production by chemical reaction was employed. 
Cellular convection patterns in a fluid with internal heat production by an electric 
current were observed by Tritton & Zarraga (1967) and Schwiderski & Schwab 
(1971) .  In  the experiments cited above, attention was given mainly to the 
effect of heat production by phase changes in atmospheric convection. However, 
since the convective motion in the atmosphere often takes place in a three- 
component fluid (consisting of air, water vapour and droplets), it may be worth- 
while to examine to what extent the motion is affected by the following three 
effects: mutual diffusion between the vapour and the inert gas, the gradient of 
the distribution of liquid droplets and temperature differences between the gas 
and liquid phases. 

The stability problem of a fluid layer having gradients of two properties was 
first studied in order to clarify thermal convection in the ocean: to elucidate the 
phenomenon called ‘ thermohaline convection ’, where the relevant properties 
are temperature and salt concentration. Stommel, Arons & Blanchard (1956) 
first noted some of its properties, including the ‘ salt fountain ’. The system was 
analysed by Stern (1960), who noted the general features of the phenomenon now 
commonly known as ‘salt fingers’. Turner (1973) gave a comprehensive review 
of convection in two-component fluids under the title ‘ Double-diffusive convec- 
tion ’. Another multidiffusive problem was discussed by Schechter, Prigogine & 
Hamm (1972), who studied t h e  effect of thermal diffusion on the convective 
instability of a two-component fluid layer. Wollkind & Frisch (1971) studied the 
thermal instability of a layer of dissociating fluid, taking into account the effect 
of mutual diffusion on the instability, where the role of dissociation energy is 
analogous to that of latent heat liberated through phase changes. 

Since in our system there are gradients of three properties, i.e. temperature, 
vapour density and droplet mass fraction, the thermal convection is expected 
to be modified in a substantial manner by the four effects mentioned above 
and to have new characteristics. The dynamics of a three-component fluid can 
be formulated by an extension of the work of Marble (1969), who dealt with 
a two-component fluid consisting of a vapour and droplets of its liquid phase. 
I n  order to simplify our analysis we employ the following fluid model, which 
approximates a real state in the laboratory experiment described belou . 

(a )  We make a Boussinesq-like approximation, i.e. it is assumed that the fluid 
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behaves as an incompressible one and density differences can be neglected except 
in the buoyancy term in the momentum equation. According to Spiegel & 
Veronis (1960)) this approximation is applicable if the vertical dimension of the 
fluid is much less than the scale heights associated with the static distributions of 
temperature, pressure and density, and if the fluctuations in temperature, pres- 
sure and density do not exceed, in order of magnitude, their total variations in the 
static state. These conditions are assumed to be satisfied. 

(b)  The distribution of liquid droplets is assumed to be sufficiently dense that 
evaporation (or condensation) takes place everywhere in the fluid, but individual 
droplets are regarded as non-interacting. I n  other words, the droplet radius is 
assumed to be small enough to satisfy these two requirements. We neglect the 
diffusion of droplets by Brownian motion because the corresponding diffusivity 
is normally much less than molecular diffusivities such as the kinematic viscosity 
or the thermometric conductivity (see the first paragraph of appendix A). Since 
the droplets are small, their sedimentation is neglected. Thus the droplets are 
assumed to be merely convected by the surrounding gas, and their velocity 
relative to the gas is neglected. 

( c )  The characteristic time of the thermal convection is assumed to be much 
larger than those associated with various relaxation phenomena among the 
three components. If there is a bounding wall, it is assumed to be wet. Therefore 
we may regard the fluid system as being in quasi-equilibrium, and the vapour as 
being nearly saturated. It is also assumed that the inert gas and the vapour have a 
common temperature distribution, which may be slightly different from that 
of the droplets since condensation of vapour on them releases latent heat. 

( d )  We assume that the vapour and the droplet densities are much smaller than 
the inert-gas density. By this assumption the effect of mutual diffusion between 
the two gaseous components is neglected except in the continuity equation of the 
vapour. 

Under these assumptions, the linear perturbation equations are reduced to 
three equations closely similar in form to those for the two-component case 
(equations (8.1.3) and (8.1.4) of Turner 1973). The remarkable difference from 
that case is the existence (when the diffusion of droplets is neglected) of an abso- 
lute instability independent of Rayleigh number for some droplet distributions. 
The limits of the regions of instability depend on the relative magnitude of the co- 
efficients of heat and vapour diffusion through the inert gas. If the coefficient of 
vapour diffusion is larger than that of heat, in other words, if the vapour diffuses 
more rapidly than heat, a layer heated from below becomes absolutely unstable 
if the (stable) gradient of the droplet distribution is less than a certain limit. It 
should be noted that the vapour diffusion is closely connectedwith the mechanism 
of phase changes maintaining the condition of quasi-saturation. However, the 
contribution of the latent heat to the stability is shown to be less important in 
this problem. I n  8 5 physical explanations of these phenomena are given. 

An experiment to  test the mathematical analysis has been carried out. The 
composite fluid used mainly in the experiment consisted of air, water vapour 
and water droplets. The droplet suspensions were produced by injecting cigarette 
smoke into the layer of air saturated with water vapour to provide nuclei. I n  the 
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experiment the state of the fluid system was unsteady owing to sedimentation of 
droplets. However we think, as the qualitative arguments in $ 8 confirm, that the 
speed of falling was slow enough for the system to be regarded as quasi-steady. 
This variation of the basic state of the system corresponds to a movement of the 
'state point' in a certain phase plane (the R, S plane in later sections). Thus 
comparison is possible between the experiment and the theory, and qualitative 
agreement has been obtained. It is shown further that the observed difference 
in behaviour between the composite fluid mentioned above and that formed 
using alcohol instead of water is consistent with the theoretical analysis. 

The mathematical analysis is performed in $52-4 and summarized in $ 5 .  In  
$ 6  the experimental apparatus is illustrated and the observed phenomena are 
described in $ 7 .  In  the final selection the experimental observations are compared 
with the theoretical results. 

2. Formulation of the problem 
We consider a fluid which is composed of a nearly saturated vapour 

(superscript v), an inert carrier gas (superscript i )  and small liquid droplets 
(superscript d) .  The governing equations are as follows. 

Continuity equations 
v .v = 0, (1)  

D D l + r  
-pv = 7 + DmV2pv, z*= --7, Pg Dt 

where v is the mean velocity of the three components, 7 the local mass production 
rate of vapour, pv and p g  ( =- pw +pi)  the vapour density and the total gas density 
respectively, r the droplet mass fraction, defined as pdlpg (pa = mass of droplets 
per unit volume of the fluid), and D, the mutual mass diffusivity of the two gase- 
ous constituents. The operator DIDt denotes substantial differentiation following 
the mean motion. 

Equation of motion 
pDvlDt = - V p  +,uV'V +@, (4) 

where p is the total density, p the total pressure, ,u an effective dynamic 
viscosity of the fluid and g the acceleration due to gravity. 

pgC$DT/Dt = kTV2T + h, 

PdCdDTdlDt = - h - AT, 
( 5 )  

(6) 

Equations of energy 

where T ( = T g  = Ti = Tv)  and Td  are the temperatures of the gas and the droplets 
respectively, C; the specific heat of the gas phase at  constant pressure, Cd the 
specific heat of the droplets, k ,  the thermal conductivity, h the latent heat per 
unit mass and h the heat transfer rate from the droplets to the gas. All physical 
quantities such as ,u, k,  D,, Cz and C p  are assumed constant. 

Equation of state pi = RipiT, pv  = RvpvT, pi +pv  = p ,  ( 7 )  

where the 91's and R's are partial pressures and gas constants respectively. The 
total pressure p is assumed constant except in (4). 
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The vapour production rate and heat transfer rate are given by 

where rv and rT are characteristic times for the respective relaxation processes 
and ps(Td) is the density at  the saturation vapour pressure at Td. When ps < p, 
i.e. whenTd is far below the boiling point, psis written in the linear approximation 
as 

where q5* E dp,(T,)/dT. In  this equation and below asterisks denote averages 
over the layer. 

P s m  = Ps(T*)+4*(T-T*)) (10) 

From the definition of r and (71, we have 

'1 p =pB+pd=pQ(l+r),  

pg pi +pv = p/RiT - ypv,) 

where y = Rv/Ri - 1 = Mi/Mv - 1 with Mi and Mu the molecular weights of the 
inert gas and the vapour respectively. The total density is written in the linear 
approximation as 

where we have used the definitions (1 1)) equations of state (7)  and the approxi- 
mate relation pv M ps(T). The quantity & is an effective thermal expansion 
coefficient. 

Governing equations for a gas carrying small non-volatile particles (i.e. a 
dusty gas) are obtained by letting 7 = 0 and omitting (2) and the quantities 
associated with the vapour. 

3. Perturbation equations and simplification 
The stability of a horizontal layer of the three-component fluid of thickness d 

subjected t o  both a temperature gradient -a  and a gradient of particle mass 
fraction - b is studied. We introduce a Cartesian co-ordinate system in which the 
x and y axes lie on the horizontal lower boundary and the z axis is vertically 
upwards. The basic stationary state, whose stability is under consideration, is 
defined by the equations 

v = 0, T = T d  = T~(z) T* -cz(z-&), (13% b )  

p" = ps(To), r ~ ~ ( 2 )  E r* - b(2 - i d ) ,  (13G 4 
p =Po = p * ( l + [ ~ ~ - b / ( l + r * ) ] ( z - t d ) ) ,  (13e t  

p = p o  = -9  podx, 7 = h = 0. (13.f) 9 )  si 
This is an exact solution of (1)-(6). The basic distribution ro of the droplet 
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fraction r cannot be determined uniquely from the governing equations. For the 
sake of simplicity, we confine ourselves to the above linear distribution. 

We superimpose small perturbations on the basic state as follows: 

'I (14) 
v = (u, V ,  w) ,  T = To + T,, T" = To + T f ,  

P = PO+Pl, P" = PS(T0) +P?, r = 'O+T1,1 

where perturbation terms are indicated by a suffix 1. The linearized equations 

(15) 
for the perturbations are 

(16) 

Q . v  = 0,  

ap7;lat - a$* w = 7 + D,V2&, 

p,av/at = -vp1+pv2v+p1g, (18) 

p$ (25 (aT,/st - aw) = k, V2T, + h, (19) 

p$ Cd(aT,d/at - aw) = - h - A?, (20) 

(21) 

(22) 

where, by using (8)-(12), 

9 = ($* T f  - P 3 / 7 r >  h = P$ CgT:  - T1)/7T, 

+ (1 + r, )-I TI]. ~1 = P* [ - 

To simplify these equations further, we introduce a new variable T',  defined by 

p;' = $* (Ti + T'). (23) 

T' is a measure of the departure from the equilibrium condition. As stated in 3 1,  
the relaxation times 7, and T~ are a,ssumed to  be small enough t o  satisfy the 
inequalities 

where rC is a characteristic time of the convective motion of the perturbation. 
Then we obtain h z -A7 from (20), which means that the energy lost by each 
droplet owing to  evaporation is immediat,eIy compensated for by heat transfer 
from the surrounding gas. Using this relation and (23) we obtain from (21) 

h = A$* T'/TO, 7 = - $*T1/TO, (24) 

where 70  = 7, + @7T, @ = h$,/p$ C;.? 

Substituting (23) into (16) and using (19) and (24)) we have 

a z y a t  = - K ~ V ~ T ,  + D,v~(T, + T' )  - ( I  + 0) TrlT0, (25) 

where ~g = k,/p$ C;. Since ro is much smaller than both 7, and the diffusion time 
d21Dm, we obtain the approximate relation 

(1 + @) T1/rO = (D, - K B )  V2Tl (25 a) 
t The quantity 0 is the ratio of the heat required for evaporation when the temperature 

is raisod by 1 "C to the heat capacity of the gas phase; hence it is a measure of the effective- 
ness of the latent heat. 
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7 = - C$* (1 + @)-I (D, - K g )  v2T1. 
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from (25). Then the vapour production rate 7 reduces to 

(26 )  

We infer from (26 )  that the relative magnitude of the two diffusion coefficient,s 
D, and is important in the problem under consideration. 

The energy equation, obtained by adding (19) to (20), reduces to 

$(aTl/at - aw) = E ,  V2Tl - h y ,  (27 )  

where pc = p$ C$ +p$ C d  and we have neglected the term involving aT'/at since 
T'/!i'i = 0(~~(d~/B,)-1)  from (25a) .  

Lastly, 
V2@ component of (18)) - a(V . (18))/&, 

together with (15), gives 

where 
p* a(v2w)/at = P V ~ V ~ W  - ga2p1, 

Eliminating 7 from (17) and (27) and using (26 )  and p1 from (28) by using (29), 
we have the following reduced set of equations for w, Tl and rl: 

a(vw) /a t  = ilv2v2w+ga2[&~~- ( I  + ~ * ) - 1 q ,  (30a) 

aFl,lat = aw +fV2Tl ,  t30b) 

&,/at = bw +pV2Tl, (30c) 
where 

p = (D,-/@)-- $* l + r *  
l + @  p; ' 

L = D m / K g  (Lewis number). ( 3 1 4  

Here it may be interesting to compare equations (30) with those for the double- 
diffusive system (see Turner 1973) mentioned in § I. Both systems consist of three 
equations for three variables: the vertical velocity, the first diffusing property 
(temperature) and the second diffusing property (the droplet mass fraction 
in the present case, the salinity in the thermohaline case). The main difference 
lies in the equations for the second properties. In  the thermohaline case the rate 
of change of salinity following the motion is related to the diffusion of salt, while 
in the present case the rate of change of the droplet-fraction perturbation rl is 
related to the term PV2T (the vapour condensation rate), the sign of P depending 
on the relative size of D, and ~ g ,  and the diffusion of r is neglected. In appendix 
A the effect of the diffusivity of r is discussed. Equations (30) also bear some 
resemblance to those given by Schechter et aZ. (1972). I f  the coefficient D in 
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equation (1)  of their paper is neglected and the coefficient DIN: NZ is replaced 
by /3, the system of equations is formally identical to (30)  .? 

We normalize length and time by using d and d2/$ respectively, retain the same 
notation for the normalized quantities and look for solutions of the form 

$ 
(Tl ,w,~l )  = @(z),-- exp[at+i(k,x+Ic,y)l. ( ad2 

Substituting these into (30), we obtain the following set of equations: 

( 0 2 -  p-1~) P W  = Rk2(0 - SY),  

0 2 @ - C r @  = - W ,  KD20-CrY = -w, 
where 

0 2  = d2/dz2 - k2, 
K = Q/S = pa/Gb, 

P = 

Q = /3/K^&(l +Y*) 

(modified Prandtl number), 

(parameter characterizing strength of vapour 
condensation rate), 

(modified Rayleigh number), 

X = b/a&( 1 + r * )  (ratio of the droplet density gradient to the gas 
density gradient). 

Elimination of W and Y from ( 3 3 )  yields 

We assume the following boundary conditions at z = 0 and 1 : 

@ = O  , w=o,  
W" = o (for a free wall) 1 

or W' = 0 (for a rigid wall),j 

where a prime denotes a derivative with respect to z.  Condition ( 3 6 a )  is obtained 
from the condition of fixed wall temperature, which is valid if the walls have high 
thermal conductivity and large heat capacity. The conditions for W(z)  are trans- 
formed into those for @ by using (33  b ) .  

Equation ( 3 5 )  and the boundary conditions ( 3 6 )  constitute an eigenvalue 
problem in which CT can take a complex value and the sign of Re (a) determines 
the stability of the system. 

Note that the modified Rayleigh number R can be expressed as 

with 

t However, in their system the basic gradient of the second property ( N ,  in their 
notation) is determined from a given temperature distribution, while the gradient of r is 
arbitrary in our problem. 
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Temperature ("C) 

FIGURE I. P ,  P and Q v8. temperature. 

Figure 1 shows the variation with temperature of P, Q and F for air saturated 
with water vapour, where r* < 1. In  most practical cases Q is less than unity: for 
example, Q N 0.01 for a mixture of air and saturated vapour at 10 "C, Q = 0 for 
a dusty gas and Q < 0 for a mixture of air and a saturated common organic 
material, such as alcohol. Hence we confine ourselves to the case Q < 1 below. 

4. Stability analysis 
4.1. Solution for free walls 

Separate analyses are given for different regions of the S, R plane. However the 
results are first shown schematically in figure 2. 

The case K = 1 (S  = Q). It may be interesting to examine first the case K = 1, 
in which equation (35) reduces to that for the classical problem of thermal con- 
vection if the parameter (1 - S )  R is considered as an effective Rayleigh number. 
Thus the critical condition for the onset of instability is 

( I - S ) R  = Ro, (387) 

where Ro is the critical Rayleigh number +74 in the classical problem. The eigen- 
value c is real in this case and steady convection appears in the marginal state. 

Since the effect of latent heat is represented by the factor (L  - 1) a/( 1 + @) in 
(37), the critical value of RQ, the Rayleigh number of the gas phase, increases or 
decreases according as the Lewis number L is larger or smaller than unity, i.e. 
Dm 5 KQ. Therefore the latent heat does not always lead to destabilization if the 
diffusion phenomena are important. 

t The relation (38) shows that the presence of the droplet distribution, represented by 
the parameter S ,  increases the critical value of R for 1 > S > 0 (stabilizing) but decreases 
it for S < 0 (destabilizing). 

7 F L M  70 
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Non-oscillatory 
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- 1  I I 
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I 

Non-oscillatory mode 1 Bo%%des 1 1 1 unstable 1 
FIGURE 2 .  Stability characteristics in the X, R plane for the free-wall case. On the line 
S = Q, the non-oscillatory mode is unstable above the point A (RA = 7 7r4 (1 - Q)) and 
stable below it. 8, = (1 - Q + P)/P. The situation is the same in the rigid-wall case. 

The case Ii $; 1 (S  =!= Q ) ,  R > 0. The solution of (35) satisfying the boundary 
conditions (36a, b )  and the free-wall condition (36c) is given by 

0 = sinnnz, (39) 
where n is an integer. Substitution of this into (35)  leads to a cubic equation for a: 

f(a) N2a3 + (1 + P) N4a2 + P[N6 - (1 - S )  Rk2] a + (1 - K )  PSRlc2N2 = 0, (40) 

where N2 = n2n2 + k2. This equation determines the eigenvalue a as a function of 
k and n with four given parameters, P, R, X and K.  The eigenvalue (T is complex 
in general and is written as a = a, + ia, (a, and ai are real). 

(a )  The case S < Q (region I). Sincef(0) is negative and the coefficient of a3 is 
positive, (40) has at least one real positive root. If the remaining two roots are 
real, they must be negative since f(0) < 0 and the inflexion point of the cubic 
curve occurs at negative a. Even if (40) has complex roots, we can show that 
their real part should be negative (seeappendix B). Thus we can say that there is 
only one root with a, > 0, and that its imaginary part is zero. Hence there is an 
unstable mode irrespective of the Rayleigh number R, and thus the critical 
Rayleigh number is zero,? and in the unstable mode the perturbation grows 
exponentially without oscillation. The growth rate a depends on R. 

In a dusty gas this instability sets in for X < 0 since Q = 0. On the other hand, 
in a fluid mixture with Q > 0 it sets in even for positive S irrespective of the Ray- 
leigh number R if S < Q ,  although positive X (droplets more abundant in the 

If droplet diffusion is present, the critical Rayleigh iiuinber becomes positive (non- 
zero) (see appendix A). 



Thermal convection in gas-droplet mixtures 99 

lower part of the layer) is thought to be a stabilizing factor. A similar example 
is seen in the thermohaline system (Baines & Gill 1969; Turner 1973), however 
the critical Rayleigh number is greater than R,. 

( b )  The case S > Q (regions TI and 111). Here, in order to see the dependence of 
stability on R, we define a quantity R, = N 6 k 2 / (  1 - S). All the coefficients in 
(40) are positive in the case S > I and in the case S < 1, R < R,. Hence (40) has 
a t  least one negative root, and if the remaining two roots are real, they should be 
negative. Thus the non-oscillatory mode (pi = 0) ,  if it exists, is stable in these 
cases. 

However, in some region of the S ,  R plane, (40) has complex roots, yielding an 
oscillatory mode. In  order to examine the marginal state of this mode, we set 
c = icri (gr = 0) and substitute this into (40). Then we find from its real and 

k2 R- 
l + P '  N2' 

P imaginary parts 
CT: = (S-Q)- 

Q+PS R = (1  -1+p) =A,, say. 

The value of R, becomes infinite at  S = S ,  E (1 + P - Q)/P ( > I). It is easy to 
show that R, < R, if S < 1, hence the oscillatory mode (or travelling wave) 
is more unstable than the non-oscillatory mode discussed above. The oscillatory 
mode also grows in the case 1 < S < S,. Therefore the transition from stability 
to instability occurs via a state of oscillation when Q < S < S,, and the critical 
Rayleigh number R,, (the boundary between regions I1 and 111) is found by 
replacing the factor N6/k2 in (42) by its minimum value 2$7r4. 

As may be inferred from the definition of S in (34f) and p, in (13e), the t'otal 
density decreases upwards if S > I .  Thus the above result states that the system 
can become unstable even when the total density distribution is gravitationally 
stable. It may be said from (41) that the oscillation in the system is caused by two 
factors : the droplet distribution, represented by S, and the phase transition, 
represented by Q.? 

Figure 3 is an S, R diagram for a fluid with P = 0.65 and Q = 0.01, where lines 
of constant a:,) (the maximum C T ~  for varying I c )  and of constant pi for vr = a?) 
are shown. The critical Rayleigh number at  A (say RLi) is +r4/( I - &) - 664. The 
broken line BAG shows the lower limit of R for complex roots to exist. Note 
that the value of r* does not essentially affect the stability characteristics if 
r* < 1, since it always appears in the combination 1 + r*. 

T h e  case R < 0. An analysis similar to those above is also possible here. The 
case R < 0 physically corresponds to heating from above (a  < 0) ,  a situation 
which is gravitationally stable in a simple fluid. It can be shown in this case that 
the system is stable or unstable depending on whether 8-Q is negative or 
positive. Note that, when the sign of a changes, the sign of S also changes for the 
same b.  The instability may be attributed to the droplet distribution being gravi- 
tationally unstable. 

-f For large k2 the term SP(1 +P)-l  Rk2/NZ appearing on the right-hand side of (41) 
corresponds to w&/( 1 + P )  in dimensional units, where uBV is the Brunt-Viiisalii frequency 
for a stable droplet distribution, defined by ( -gp*-ldpd/dz)*. 

7- 2 
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0.01 (Q) 

s 
FIGURE 3. Lines of constant growth rate aim) (solid lines) and constant frequency ui 
(broken lines) for P = 0-65 and Q = 0.01 for the free-wall case. S, = 2.52. Complex roots 
do not exist below the line BAC. 

The case R = 0 (a  = 0) must be dealt with by going back to (30). It is found, by 
setting TI = 0, that the system is stable or unstable depending on whether b is 
positive or negative. 

4.2. Xolution for  rigid walls 

When K = 1 (8 = Q ) ,  the situation is the same as that in the free-wall case. 
The critical Rayleigh number is given by (38), where R, is here 1707.8. 

When K + 1, a general solution of the sixth-order linear equation (35) can be 
constructed in the form 

where the Ai are six constants and the f i  are six mutually independent functions 
satisfying (35). According to the method of Sparrow, Goldstein 13 Jonsson (1964), 
t'he f i  may be expressed as 

m - 
f i ( z )  = C.ai,nzn (i = 0,1, ..., 5) .  

n=O 
(44) 
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FIGURE 4. Lines of constant growth rate a:?' (solid lines) and constant frequency bi 
(broken lines) for P = 0.65 and Q = 0.01 for the rigid-wall case. RA = 1708/(1- &) = 1725. 

Without loss of generality we can put ai,n = Sin (i = 0, ..., 5), then the other 
coefficients can be determined uniquely from (35). The constants Ai (i = 0, ..., 5) 
are to be determined from boundary conditions (36a, b )  and the rigid-wall con- 
dition (36c). The requirement of a non-vanishing solution leads to a characteristic 
equation for a and k including four parameters, P,  R, S and K (or Q ) ,  which can 
be solved numerically. 

It may be shown that the real part of a has a maximum value a(,m) when k is 
varied for fixed R and S (and also for fixed P and Q, which are material constants 
except for the unimportant factor 1 + r* in Q ) .  The neutral curve (a:? = 0) and 
equal-a',") and equal-a, curves are presented in figure 4 for the same fluid as in 
figure 3. The critical Rayleigh number R, a t  A is 1708/(1- Q) = 1725. I n  b0t.h 
figures 3 and 4 the frequency a,, roughly speaking, depends on S and increases 
with it. 

Figure 5 shows the growth rate a, for P = 0.65, Q = 0.01 and S = 0 (regionI) as 
a function of R and k. The maximum of g, occurs a t  k = 3-4. The relation between 
this maximum rkm) and R is shown in figure 6. The value of aim) exceeds one a t  
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FIGURE 5 .  Growth rate of the non-oscillatory mode for the rigid-wall case as ~2 

function of k for various R, with P = 0.65, Q = 0.01 and S = 0. 

R w 1500 and increases rapidly for larger R.7 Because of the normalization of the 
time mentioned in $3, the condition g,. = 1 means that the characteristic time 
of growth is equal to the time for heat to diffuse across the layer, i.e. d'l?. 

5. Summary of the analysis 
The thermal instability of a three-component fluid has been discussed under 

the assumptions that the fluid satisfies a Boussinesq-like approximation, that the 
droplets are sufficiently small and dense, that the Brownian motion and sedi- 
mentation of droplets may be neglected, that the characteristic times of thermo- 
dynamic relaxations are sufficiently small, i.e. the vapour is nearly saturated, and 
that the inert gas contributes the main fraction of the mass. The dynamical 
behaviour of such a fluid is governed by the set of equations (30) or (33) and 
characterized by the non-dimensional parameters P, Q (or K ) ,  R and S, defined 
in (34). 

In  the free-wall case, an oscillatory mode appears when R is higher than a 
certain critical value for Q < S < S,, the layer is completely st,abilized for 
S > S,, and the non-oscillatory mode grows for S < Q. Similar results are 
obtained in the rigid-wall case. The stability characteristics depend strongly on 
the difference D, - KO. For example, when Q (of D, - KQ) > 0, the system is 
completely unstable for 0 < S < Q, though a positive S is thought to be a 
stabilizing factor. 

The mechanism of this absolute instability may need some explanation. When 
S < Q ( K  > 1)) the term KD20 in (33c), which is associated with vapour con- 
densation, is more dominant than the term D20 in ( 3 3 b ) ,  which represents heat 

A similar curve is obtained for the free-wall case, where a, > 1 for R > 700. 
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FIGURE 6. Curve of maximum growth rate ~ 1 ~ ’  vus. R, which 
corresponds to the peaks of the curves in figure 5. 

diffusion. Now consider a parcel of fluid in the layer with a higher temperature 
than its surroundings. In  this parcel vapour is more abundant thaninits surround- 
ings. Therefore both temperature (heat) and vapour diffuse outwards from the 
parcel. However, owing to the inequality Dm > icrr (Q > 0) ,  vapour diffuses more 
rapidly than heat (in a qualitative sense), the vapour diffusion being followed by 
immediate vapour production from liquid droplets in the parcel. Thus the total 
mass of droplets in the parcel decreases rapidly, while cooling by heat diffusion 
is comparatively slow. As a consequence the parcel becomes lighter under certain 
conditions than its surroundings. In this way, the instability sets in. However 
the onset of this instability is confined to the case S < Q. For larger S the growth 
of perturbations may be inhibited by the stable distribution of droplets. This in- 
stability might be called ‘ evaporation instability ’ or ‘ condensation instability ’. 

The existence of latent heat has no decisive effect on instability. The reason is 
that the latent heat of the vapour causes increases in both an effective heat 
capacity and an effective heat conductivity (through vapour diffusion) of the 
composite fluid, hence the two opposing effects of the latent heat on the effective 
thermometric conductivity 2 offset each other, giving only a small correction. 

The physical picture of the oscillatory mode appearing in regions I1 and I11 
resembles to some extent that of thermohaline convection, described fully by 
Veronis (1965), if the droplet fraction is replaced by salinity. 

6. Experimental apparatus and methods 
An experiment to test the above results has been carried out. Figure 7 shows 

schematically the apparatus, in which a horizontal layer of composite fluid (a 
cloud) was formed with an imposed temperature gradient. Two square vessels 
C and D of acrylic resin with sides of length 13 em contained pure hot and cold 
water respectively, so that the convection layer A was bounded by a surface of 
the hot water and the under surface of D ,  and was considered to be saturated 
with water vapour. An aluminium plate B was placed at  a depth of 1 mm below 
the surface in order to check convective motion in the hot water. It was covered 
with black cloth for the purpose of obtaining a better view of the motions in A 
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FIGURE 7. Side view of the convection chamber. A,  convection layer; B, aluminium plate 
covered with black cloth; G, hot-water vessel of acrylic resin; D,  cold-water vessel of 
acrylic resin; E, hot bath; P, Styrofoam; G, pipe for smoke injection; H ,  support of 
aluminium plate; I ,  needle for measuring thickness of A ;  J, tube for needle 1; 
K ,  thermocouples. 

from above. The vessel C was put in a hot-water bath E covered with Styrofoam 
F ,  which was placed on a base with equipment for levelling. The difference 
between the temperatures of the water in C and D was changed between 5 and 
20 "C such that the higher temperature did not exceed 50 "C. I n  order t'o keep the 
upper boundary of A wet and also to assure a clear top view of the motion, its 
surface was sprayed with defrosting liquid for car windows. 

The droplet suspension (cloud) was produced by injecting cigarette smoke into 
A through a pipe G to  provide nuclei. The smoke particles had the advantage of 
acting as flow tracers as well. We observed the development of the layer of com- 
posite fluid after afinite-time injection for about one second. The mean pressure in 
A was always kept a t  atmospheric since there was an opening between C and D; 
this was narrow enough to have little effect on the convective motion in A. For 
the sake of comparison convective motion in dry air has been observed, using 
(non-volatile) glycerin instead of hot water. 

The thickness d of A was varied between 8 and 13 mm and measured to  within 
an error of 0.1 mm by inserting a thin needle I through the pipe J .  The tempera- 
ture difference AT between the upper and lower boundaries was measured by two 
copper-constantan thermocouples K connected in series. The temperature TL of 
the lower boundary was sometimes measured by inserting a semiconductor 
thermometer. From the measured values of d, AT and the mean temperature T.+ 
( =  TI,+ $AT) we can calculate the Rayleigh number R defined by (37)) where 
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the factors pc/pB, (2; and 1 + r* are put equal to 1 since r* < 1 in our experiment. 
The error in the value of R comes from those in d,  AT and T,, and is about 5 yo. 

Side-wall effects have not been examined critically, but the observed flow 
patterns were not greatly affected by the side walls. Though this experimental 
system is quite simple and roughly constructed, it is sufficient for examining the 
qualitative nature of the motion. 

Photographs and recordings on video tape were taken from above. The side 
view of the motion could be seen more clearly in a smaller and simpler con- 
vection chamber with a horizont.al cross-section 5 x 7 cm, and was photographed 
together with the top view. 

7. Experimental results 
7.1. Observed phenomena 

Soon after the smoke injection droplets began to grow in size and fall down quite 
slowly, hence a density gradient due to the non-uniform distribution of the 
droplets was formed besides the given temperature gradient. The natural de- 
velopment of the droplet distribution due to the sedimentation tended to make 
the droplet gradient parameter b positive and increase gradually. Correspondingly 
the parameter S, which was positive, increased slowly. Thus the ‘state point’ in 
the R, Xplane moved t o  the right. At the bottom of the layer the droplets dissolved 
into the hot water and the droplet density decreased, therefore after a while its 
gradient also decreased and the state point in the R, S plane turned back again to 
the left. During this process motions corresponding to different regions in the S, R 
plane appeared successively. Thus, observation of the phenomena in the layer A 
will offer a test of the theoretical result shown in figure 2. During the sequence of 
several phases of the system in each experimental run described below, the 
Rayleigh number R is considered to remain almost constant. We confine ourselves 
to the phenomena after the smoke injection, for any motion before that is hard 
to observe and does not seem to affect the subsequent phenomena. The sequences 
of phases observed with different Rayleigh numbers are summarized diagram- 
matically in figure 8. 

The first phase observed was a flow induced by the smoke injection (the initial 
phase). The appearance of this phase depended on how the smoke was injected 
and not on the Rayleigh number. It lasted for a few seconds and the next phase 
followed immediately. A typical example is shown in figure 9(a )  (plate 1). 

The phase following the initial phase was different for different ranges of R. 
If R < R, z 1800, the fluid became still with only the droplet sedimentation pro- 
ceeding quite slowly (this phase was named the static phase). On the other hand, if 
R 2 R, a convective motion with cells appeared (the cellular phase). An example 
of the celluZar phase is shown in figure 9 ( b )  (plate 1). The lifetime of this phase 
increased with R, and became half a minute a t  R - 5000. For R slightly larger 
than R,, the cellular phase was followed by the static phase mentioned above. 
If R was much larger than R,, each cell boundary in the cellular phase drifted 
randomly, and following this phase a new motion involving travelling waves 
appeared (this is named the wave phase). During the motion the cloud of droplets 
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was falling downwards, and the upper surface of the cloud layer performed 
wavy motions similar to water waves. An example of the wave phase is shown 
in figure 9(c )  (plate 1). The duration of the wave phase also increasedwith R. 
SO long as R was only moderately larger than Re, the wave phase decayed after a 
time and was followed by the static phase. 

The phases after the static phase were as follows. If R < R,L z 1400, the static 
phase lasted for the order of a minute and the cloud disappeared by sedimenta- 
tion, no change being observed until another smoke injection was made (this 
last phase is named the Jinal phase). If R 2 R,, several circular holes appeared 
spontaneously when the calm cloud layer settled into a thin layer just above the 
bottom (see figures 9d and 10a). The motion, though quite slow, was seen to be 
downwards a t  the hole centre and upwards at  the periphery, so that the part of 
bhe cloud in the central part was swept to the periphery. After a while the whole 
area was covered with such holes, and they then rearranged themselves into 
a regular and stationary honeycomb pattern. Examples of this phase (the hole 
phase) are shown in figures 9(e) and (f) (plate 2). The hole phase gradually 
faded through the diffusion of the cloud (also named theJinaZ phase); for rela- 
tively larger R, the remaining faint cloud showed cellular convective motion 
(figure 9 h ) ,  while for smaller R, the layer became transparent without any 
visible motion as in the case R < R, (figure 99, plate 2). 

When R was sufficiently larger than Re, the fluid layer showed the cellular 
and wave phases in series, but the static phase did not follow the wave phase. At a 
later stage of the wave phase the motion became turbulent and sometimes isolated 
holes like those in the initial stage of the hole phase appeared and soon vanished 
into the fluid performing wavy motions. Figure 9( i )  (plate 3) is an example of 
this phase (also named the hole phase). During these motions the cloud became 
gradually sparse and entered the $nu1 phase, where active convection was ob- 
served. I n  most cases transitions from one phase to another took place suddenly, 
and each phase, even when it had a short lifetime, could be recognized clearly. 
No phase seemed to be much modified by the preceding phase. 

Top and side views of the hole and wave phases are shown in figures lO(a) and 
(b) (plate 3) respectively. The cloud is seen to occupy the lower part of the layer, 
while the upper part is clear. 

The duration of each phase was not unique for each experimental run, but the 
whole process usually finished within a few minutes, five a t  most. 
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D,, (cm21s) K (cm2/s) ~g (cm%/s) 
- - Air 0.21 

Water vapour 0.26 0.46 0.22 
Methanol vapour 0.16 0.25 0.22 
Ethanol vapour 0.12 1.7 0.23 

TABLE 1. Values of D ,  (through air), K (thermal diffusivity in pure substance) and 
KB (in air saturated with vapour), each at 30 "C 

7.2. Measurement of R,, R,, etc. 

The critical values R, and R, have been obtained by observing the appearances 
of the cellular and hole phases respectively. The results (figure 11) show that 
R, = 1800 f 50 and R, = 1400 & 50. In  the same figure is shown a result for dry- 
air convection, from which we have the critical value 1800. It is a little higher 
than the theoretical value 1708, but this discrepancy may be due to errors in the 
measurement of R. Note that convective motions must be visible a t  values of R 
larger than the theoretical one. The critical value of R for the appearance of the 
wave phase has not been measured, for it was difficult to recognize the critical 
condition for the wavy motion. 

The motions in the cellular, wave and hole phases had nearly the same horizontal 
scale, about twice the thickness d. In particular the scale of the holes was mea- 
sured when the convection pattern was regular. When R = 2.1 x lo3, an average 
distance between the opposite sides of the hexagons was (2.1 -t 0.l)d. 

By using a video tape recorder the speed of travelling waves in the wave phase 
was measured for the two cases R = 3.6 x lo3 (d = 1.2 cm) and R = 5.2 x lo3 
(d = 1-4cm). The speed increased with time and reached a maximum value of 
0.8 cm/s in both cases, but after a while it seemed to cease increasing. 

7.3. Alcohol clouds 

In  order to examine the dependence on the diffusion coeEcients Dm and KB, we 
studied two further composite fluids, made using methanol or ethanol (alcohol 
clouds). For the water cloud described in the previous section, the parameter Q, 
defined in (34) wikh (31), is positive ( z  + 0.01 at 10' C) because of the inequality 
D,, > KB (see table l) ,  while for both alcohol clouds Q is negative because 
D, > KO. On the other hand, in every experiment heated from below (a  > 0), 
the parameter X in (34) is positive because natural sedimentation of droplets 
yields positive b. Thus in the experiments on alcohol clouds it is plausible that 
the stability boundary at  X = Q ( < 0 )  in the R, X plane (figure 2) does not come 
into play in practice. 

For almost all the observations of alcohol clouds we found one of the following 
series of phases: initial -+ static +Jim1 or initial -+ wave + static +Jinal. Some- 
times a motion similar to the cellular phase occurred while the hole phase was not 
observed. Thus we infer some relation between the instability in region I and 
the hole phase. 
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FIGURE 11.  Measured values of R for various values of 6. 0 ,  onset of the cellular phase ; 
a, onset of the hole phase with no cellular phase; x , no hole phase; , onset of cellular 
convection in the dry air; @, no convection in dry air. 

8. Discussion 
Here we show that the observed phenomena (summarized in figure 8) can be 

well predicted by the theory by means of an R, X diagram (figure 2). A sequence 
of several phases observed in each experimental run is considered to be caused 
by variation of X with an almost constant value of the Rayleigh number R. 
First we consider the water cloud. 

We have no measured estimate of S except that of 0.5 for the wave phase (see 
below). However in the initial phase we may assume X to be much less, since the 
droplet distribution will be more uniform owing to disturbances due to the smoke 
injection or some convective motions before injection. Therefore the initial 
position of the state point in the R, S plane lies nearer the R axis and to its right- 
hand side, but may be on either side of the line S = &. If it lies to its right, we can 
ascribe the appearance of the cellular phase following the initial phase to the 
instability in region I1 of figure 2. This is an oscillatory mode, whose frequency 
increases from zero on the line S = Q with increasing S a t  fixed R (figure 4). 
When S is small enough, i.e. when the frequency is small, the mode will be almost 
steady. The system enters a wave phase corresponding to the oscillatory mode (for 
large enough R, see below) as S increases further. On the other hand, if the state 
point lies to the left of the line S = &, another mode of instability may emerge. 
However, it appears to be highly possible that, before this mode amplifies enough, 
the state point moves, crossing the line S = Q,  when we consider the facts that 
the value of Q is as small as O( and that the characteristic time of growth of 
a disturbance for R = 1500 and S = 0, which is d2/k? M 5s  in our case ($4.2), 
is not so small compared with the characteristic time of sedimentation of about 
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30 s. In  any case, the critical Rayleigh number for the appearance of convective 
motion following the initial phase would be equal to that of the mode of instability 
in region 11, which is R, = 1725 in figure 4. This agrees quite well with the mini- 
mum Rayleigh number R, (= 1800) for the appearance of the cellular phase. 
It is worthwhile to note that the instability in region I1 is a modified version of 
the instability mode in single-component thermal convection. 

When R is less than R,, the state point stays in the stable region I11 (figure 2), 
which corresponds to the static phase. In  this phase, however, sedimentation is 
going on, and the parameter S first increases and then decreases after attaining 
a certain maximum. The state point turns back again to the left and finally enters 
region I, which has an instability mode. We regard this as the hole phase. However 
in the experiment we found no convective motion for R < R, ( M 1400). The 
explanation is as follows: the maximum growth rate @) is less than unity for 
R < 1400 (figure 6), therefore the characteristic time of growth of a disturbance 
is more than 5 s, whichis comparable with the fading-out time of the cloud. After 
the disappearance of the cloud, the composite fluid will become a two-component 
fluid, which will be inert and behave differently, and its critical Rayleigh number 
will belarger (ifthevapour diffusionisneglected, the critical value should be 1708). 

When R is larger than RA ( m  Rc), the wave phase follows the cellular phase as 
described above. As S increases further, the state point enters the stable region 
111 and the wave phase becomes the static phase. However when R is only slightly 
larger than R,, i.e. when the growth rate ur is small, the wave phase does not 
emerge. Probably the system enters the stable region I11 without having enough 
time for amplification of wavy disturbances. When the state point turns back to 
the left inside region I11 and re-enters region 11, the wave phase should follow the 
static phase. But its appearance was not observed even for larger R. The system 
does not seem to have enough time to amplify wavy disturbances, and instead 
it enters the hole phase, which appears when the calm cloud layer settles into 
a thin layer just above the bottom. In this phase non-oscillatory disturbances 
grow up and regular patterns of convection cells are seen. Finally this becomes 
a transparent Jinal phase. 

According to the observations at  very high R, the static phase does not emerge. 
This can be explained by assuming that S does not become larger than a certain 
value O(l) ,  so that the state point turns back, remaining inside region 11, for 
such a high R. This assumption can be confirmed by a measured estimate of S in 
the wave phase. Normalizing the measured maximum wave speed c and wave- 
number k by a/d and d-l respectively, we have vi ( = kc)  21 15 or 20 for R = 3600 
or 5200 respectively. By looking at figure 4 we obtain S N 0.5 for both cases. 

The theoretical value of the wavelength of the most unstable mode in the rigid- 
wall case is 1.9 for R = 2000and S = 0. Agreement with the measured wave- 
length in the hole phase is rather good. In the wave and static phases, we can 
observe a clear upper surface of the cloud layer as is shown in figures 10 (a )  and 
( b ) ,  so that the droplet distribution would be rather discontinuous. Hence the 
linear distribution assumed in the theory would be a very rough representation. 

Interpretations of phenomena in alcohol clouds are also possible on the same 
lines as above, taking account of the fact that the line S = Q lies to the left of the 
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R axis in R, S plane. Therefore the hole phase does not appear in alcohol clouds 
before the final phase. 

I n  conclusion, all the qualitative features of our experiments have been 
explained in terms of the theory summarized in $5. The mechanism of evapora- 
tion and subsequent diffusion presented there must be taken into consideration 
when we investigate thermal convection in the three-component fluid, and the 
dependence of the phenomena on the parameter Q is crucial. 

Our results may be applied to various meteorological phenomena so long as 
diffusion processes are important, although their application must be subject to 
the many restrictions made in the analysis. Here it may be interesting to refer 
to a phenomena called 'hole-in-cloud' reported in Weatherwise (vol. 4, 1968, 
frontispiece), which is a hole of diameter 10 kilometres in a cloud layer of height 
several kilometres. The present authors are inclined to  regard it as a kind of 
convective motion caused by a thermal instability in which vapour condensation 
(or ice formation) and vapour diffusion play an important role. This opinion 
agrees with one of the interpretations of this phenomenon (Agee 1969). For the 
strict analysis of phenomena in the atmosphere, assumption (a)  in $ 1 must be 
removed. 

The authors would like to express their gratitude to Professor I.Imai and 
Professor H. Hasimoto for their encouragement throughout this work. They 
are also grateful to Dr J. S. Turner, who read the manuscript and gave useful, 
constructive criticism. 

Appendix A 
When the diffusion of small (liquid) droplets is caused by Brownim motion 

in a medium, the coefficient of diffusion Dd is given by the Einstein relation 

Dd = SkBT, 

where T is the temperature of the medium, k, the Boltzmann constant and 5 
the mobility of the Brownian 'particle'. For a spherical droplet with radius a, 
the Stokes drag law gives 5 = 1/6npa, where ,u is the fluid viscosity. Thus one 
obtains Dd = kBT/6npa. Hence Dd = 1.2 x lo-' (cm2/s) for a particle with 
a = 10-4 em in air at T = 300" K .  The ratio of Dd to KB or Dm is about 10-6, so that 
one may neglect the diffusion of droplets in the present problem. 

If  the diffusivity of t'he droplets is taken into account, (3), (30c) and (40) must 
be replaced by 

7 + Dd V2r, D l + r  - r  = ___ 
Dt Po 

&,/at = bw +pV2T, + DdV2rl, (A2) 
N%3+ ( I  +P +K,) N4v2 + {(P + K, +PK,) N6- (R- R,) Pk'} 

+PK,N8+{( l -K)B, -K,R}Pk2N2 = 0, (A3) 

respectively, where K, = Dd/Kh and R, = SR. When K, = 0, (A3) reduces to (40) 
while if K = 0 it reduces to the equation for the double-diffusive system (Turner 
1973, equation (8.1.8)). 
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The boundary between stability and instability is represented by two curves 
(branches of two hyperbolas) in S ,  R plane as follows: 

(1 + P )  (1  +K,) (Q +K,) (P+ K,) - Kr(l +P-  Q )  so = 
(l+P+K,)(P+K,) 

where 

These curves meet a t  a point on the line S = So. The imaginary part of (T does not 
vanish on the curve (A4), while it does vanish on (A5). It is worth noting that, 
when I(, = 0, one obtains So = Q and (A4) reduces to (42) with N6/k2 in (42) re- 
placed by R,, and that for S < So there is a non-zero critical Rayleigh number in 
this case, which, however, vanishes for K, = 0 (the case discussed in the main 
body of the present paper). 

Appendix B 
Under the conditions S < Q < 1, 0 < R and 0 < P, one can show that 0;. 

should be negative provided that ( T ~  does not vanish. Equations (33 )  can be 
written in the form 

(D2 - a /P)  D2W = - R ~ ~ ( A ( T - ~ D ~ O  - B O ) ,  (B 1) 

where A = Q - S ( > 0 )  and B = 1 - S ( > 0) .  Multiplying (B 1)  by 
plex conjugate of W )  and integrating over z ,  one obtains 

(the com- 

Using ( 3 3 b )  on the right-hand side, integrating both sides by parts and using the 
boundary conditions (36), one obtains 

It should be noted that ( B 3 )  is valid for both free and rigid bounding surfaces. 
Writing (T = a; + i(~% and equating the imaginary parts on both sides of (B 3 ) ,  
one has 

( T ~  [$/I{ I W’I + k21 WI 2} dx + Rk2 BJ11 0 I2dx 
0 0 

+ R k 2 L l 1  { ID2@ [ 2 + Z(T, ( 1  0 ’ 1 2  + Ic2]  01 ”,> dx = 0, (B 4) bI2 0 1 
hence a, c 0 if ( T ~  + 0. 
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FIGURE 9. Top viess of several phases. Dcscriptioris of these pliases arc given in $7.1.  ( a )  
I?iatral pliusc, R = 1.6 x lo3. ( b )  Cellular phase, R = 2.0 x lo3. (c )  Wave phase, R = 3.5 x lo3. 
A few holos near a side wall are produced bccause of non-uniformity of the cloud distribii- 
t ion i n  tho horizontal direction. ( d )  Earlier stage of the hole pkiasc, R = 2.0 x lo3.  ( F )  Hole 
phase, R = 2.0 x lo3.  ( f )  Hole phase, R = 3.5 x lo3. ( 9 )  Final pliasc, R = 1.6 x lo3. ( h )  
E’LrLal phas-, R = 3.5 x 1 0 3 .  (i) Isolated holes in the turbulent waves, R = 5.2 x lo3. Ttie 
s:nall black point in the centre of the photographs ( b ) ,  ( d ) ,  ( e )  and ( i )  is the pipe J .  Tlic 
five uhitc lincs zxtending froin thc pcrirneter in thc same pliotog~aplis arc the tliorrno- 
couples R ronncbctcd iii scrics. 

(a) ( b )  

FIGURE 10. Top and side views of (a )  a hole and (6) waves in the smaller convectioti 
chamber. Arrows in the side views show the upper and the lower boundaries of the con- 
vection layer. 
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